Lips Region Detection for Visual Speech Processing

- Presented by: Adi Fridman and Ortal Shechtman
- Supervised by: David Dov

Date: 29/1/2014
Motivation - why visual speech?

- The performance of traditional audio algorithms deteriorates in highly non-stationary acoustic environment.

 Visual information is totally immune for that type of noise.

- Visual information has shown to be useful for Speech Recognition and Voice Activity Detection.

- Frontal videos are commonly used for VOIP and cellphone video calls.

- Lips contain over 90% of visual speech data.
Lips Region Detection for Visual Speech Processing

• Previous work- Approaches for Lips Detection

 • **Color based** lips detection
 – Based on color segmentation.

 • **Key points** detection
 – Key points examples: eyes and lips edges.

 • Detection based on **face geometry**
 – Assume constant distances between facial features for different speakers.
Lips Region Detection for Visual Speech Processing

- System Block Scheme: incorporation with audio visual VAD

1. Lips region detection
2. Visual features extraction
3. Audio visual detection
4. Speech/non speech
5. Audio features extraction

Lips region detection

- Face and eyes recognition
- Lips detection
- Accurate cropping
• Proposed Algorithm - Geometry Algorithm

- Detect eyes and face.
- Define M=distance between eyes.
- Detect lips region= estimate lips region size and location using M and face geometry.

Disadvantages:

- Different people has different face geometry.
- Slight head rotation may change lips location with respect to eyes.
• **Proposed Algorithm** - Geometry Algorithm – face proportions

- **L** - vertical distance between the lips center and the middle of the eyes.
- **M** - horizontal distance between the pupils.
- The ratio L/M was determined empirically.

L = 1.11M

M

0.7M
Proposed Algorithm - Geometry + Search Algorithm

- Detect lips region using geometry algorithm.
- Enlarge the detected region by a constant factor.
- Calculate visual feature.
- Search lips region in the feature space.
- Define *energy* based measure to locate Lips region accurately.
Proposed Algorithm - Geometry + Search Algorithm - Visual Features

- Use features of the VAD algorithm

Optical Flow:
- Decomposes an image into small squared cells.
- For each cell find the matching cell in the next frame.
- The cell change direction is the motion vector.

HOG Features:
- Decomposes an image into small squared cells.
- Computes an histogram of oriented gradients in each cell.
- normalizes the result and return a descriptor for each cell.
• Proposed Algorithm - Geometry + Search Algorithm - Visual Features

- Use **HOG** Features following to David’s research.

- The cell size D is chosen according to a threshold.

- Large D – more information.

- Small D – better resolution.

- HOGs may be efficiently scale converted.
• Proposed Algorithm - HOG Features

• Assumption: the lips area contain the features with high energy.

• Search a bounding box with maximal energy.

• Bounding box size - same as in the Geometry algorithm.
Simulation Results - Qualitative Evaluation
Conclusions

Advantages:

- Accurate lips region cropping
- Robust to lightning and skin color.
- Can be used with a variety of features.
- Low computational cost - no additional features extraction.
- Outperforms face geometry algorithm.

Disadvantages:

- Ground truth setting is still challenging.
- Compatible for front videos only.